ENSEMBLE LEARNING METHODS:

FOR ROBOT GRASP QUALITY ESTIMATION

OMRI GREEN - MILES GREGG - JUSTIN SMITH - FADI ALLADKANI

GROUP 4

OUTLINE

I. PLANAR GRASPING PROBLEM

- MOTIVATION
- MODERN GRASPING APPROACHES
- 3. PROBLEM WITH EXISTING METHODS

II. PROPOSED SOLUTION

- ECNN: ENSEMBLING SOLUTIONS
- 2. DIFFERENT ENSEMBLING METHODS
- 3. CHOSEN ENSEMBLING METHOD

III. FORMULATION

- 1. MIXTURE OF EXPERTS
- 2. ECNN
- DATA ADAPTERS
- 4. PERFORMANCE & TRAINING

IV. VERIFICATION

- 1. EXPERT SELECTION
- 2. TRAINING
- 3. EXPERIMENT

PLANAR GRASPING PROBLEM

Robots often used in factories for pick-and place **Revolutionized** several industries

Why not use grasping in other places? (**Generalized Grasping**)

HOUSEHOLDS RECYCLING PLANTS WAREHOUSES

PLANAR GRASPING PROBLEM

Grasping general objects is difficult

Excel in controlled environments

Known object shapes

Known rough object locations

Known assumptions

Facilitates widespread adoption

Lose Performance in unknown environments

Unknown object shapes

Unknown object types and quantity

No a-priori assumptions on environment

Prevents widespread adoption

Best Candidate

Quality Estimation

Generative

Modern solutions to generalized planar grasping

Data-Driven

Attempt to generalize

Three major approaches

Best Candidate

Quality Estimation

Generative |

Representative Algorithm

Fast-Search

Two-Stage Process

- 1. Neural Network estimates top candidate grasps
- 2. Second Neural Network selects best grasp from candidates chosen in **step 1**

Best Candidate

Quality Estimation

Generative

Question How stable is this grasp on this object?

Grasp Quality used as a metric for grasp stability ([0.0, 1.0])

Quality Estimation uses Convolutional Neural Networks to estimate **Grasp Quality**

Best Candidate

Quality Estimation

Generative

Sample multiple grasps and rank **Select** best one (highest grasp quality)

Best Candidate

Quality Estimation

Generative

Representative Algorithm

Dexnet-4.0

Grasp Quality Convolutional Neural Network [1] (GQCNN)

Trained on large synthetic dataset Fully convolutional neural network Uses depth images

11

Best Candidate

Quality Estimation

Generative

Avoid sampling multiple grasps

Select pixel where grasp quality is highest

Best Candidate

Quality Estimation

Generative

Representative Algorithm

Generative Grasping Convolutional Neural Network [1] (GGCNN)

Trained on sets of real-life images and grasping rectangles Can run in real time Uses depth images

PROBLEM WITH EXISTING METHODS

- Above grasping algorithms attempt to generalize
- Still show difficulty grasping
 - Sensitivity to object shapes
 - Sensitivity to environmental conditions
 - Sensitivity to camera/lighting

PROBLEM WITH EXISTING METHODS

LARGE INPUT SPACE

Large **variety** of objects
Different environmental **conditions**Different gripper **parameters**

PROBLEM WITH EXISTING METHODS

Inability to generalize **IMAGE SPACE** Sensitivity to environmental conditions Grasping difficult / unknown objects **Grasping Algorithm A Grasping Algorithm B** Input region where Algorithm A's estimates is closest to ground truth Input region where Algorithm B's estimates is closest to ground truth

ENSEMBLE-BASED SOLUTION

ECNN: Ensemble Convolutional Neural Network

Combine multiple grasping algorithms

- Combination done by Gating Network
- Take advantage of strengths of each expert
- Overcome weaknesses of each

Emphasis on performance and flexibility

Best Candidate

Quality Estimation

Generative

Ensemble expert candidacy

Different experts which can be used

Impacts ensemble network architecture

Gating Network selects which grasp to execute

Gating Network calculates weighted average

quality from each expert

quality from each expert

ENSEMBLE-BASED SOLUTION

ECNN: Ensemble Convolutional Neural Network

Choose **Quality Estimation** combination

- Avoid discarding expert opinions
 (Weighted sum ensures all experts contribute)
- Pair with Grasp Sampler
- Use Mixture Of Experts model

Statistical Ensemble

Combine multiple classifier outputs

Improve overall performance

- Elimination of generalization errors
- Improve estimation accuracy

Input-dependent weighted combination

- Weights as a function of {image, grasp}
 - Assign weights to expert opinion based on the input
 - Learn which experts provide grasp quality closest to ground truth for which input
- Gating Network

Benefits from expert diversity

$$y(x) = \sum_{i=1}^{n} y_i(x)g_i(x)$$

Training Phase Learn which experts perform best on which inputs

Evaluation Phase Use learned information to assign weights to experts based on input

Input

Ц

Grasping Expert Qualities

 q_0

 q_1

 q_2

Gating Network Weights

 g_0

 g_1

 g_2

Output

q

Advantages

- Existing open-source solutions and methods
- Less training
- Increased generalization

ECNNs: Ensemble CNNs

Goal: Design Gating Network **Goal:** Expert Selection

- Constant Weights (reference)
- Image (ImECNN)
- Grasp-Image (GrImECNN)

- Diversity
- Availability
- Accuracy

CONSTANT WEIGHTS

For Comparison

- Weights learned offline
- Weights independent of input

$$y = \sum_{i=1}^{n} g_i y_i(x)$$

OUT

IMAGE

Expert Classification: per-object

- Convolutional Gating Network
- Weights dependent on image of object

$$y = \sum_{i=1}^{n} g_i(\mathbf{I}) y_i(x)$$

Expert Classification:

per-object, per-grasp

Grasp Integration:

Crop + Rotate Image

GRASP-IMAGE

Expert Classification: per-object, per-grasp

Grasp Integration: Crop + Rotate Image

COMPATIBILITY - DATA ADAPTERS

Varied grasping algorithms

High flexibility

PERFORMANCE & TRAINING

Training

- Training Gating Network
- Network should learn mapping

 $(Image, Grasp) \rightarrow Expert Weights (g_i)$

PERFORMANCE & TRAINING

Efficient Training

- Frozen expert models
- Run experts once, cache results

PERFORMANCE & TRAINING

Low Performance Overhead

- If possible, parallelize networks
- Small Gating Network

VERIFICATION

Sample ECNNs Three Experts

- Finetuned Dexnet 4.0 (GQCNN-4.0)
- Generative Grasping CNN (GGCNN-D)
- Custom Generative Grasping CNN (GGCNN-RGB)

Training Cornell Dataset^[1] Experiment YCB Dataset^[2] Franka Emika + RealSense

EXPERT SELECTION

Emphasis on

DIVERSITY AVAILABILITY

ACCURACY

GQ-CNN

Training: Synthetic Data

Depth Input

Good on adversarial objects

GGCNN-D

Training: Real Data

Depth Input

Good in clutter

GGCNN-RGB

Training: Real Data

Color Input

Good in clutter

WEIGHT FUNCTION $g_i(\cdot)$

Ground Truth Grasp Quality Mug Pen **Three Ensembles** (Each Grasp) Constant Weights • ImECNN Good Grasps 1.0 GrlmECNN **Dataset** Cornell Grasping Dataset • Handlabelled good/bad **Bad Grasps** 0.0 grasps • Images from real camera **GATING NETWORK ImECNN GrImECNN Constant Weights**

Image-Dependent

(Grasp + Image)-Dependent

Input-Independent

Metric

- Testing classification accuracy
- Grasp successfully classified if
 - Estimated q < 0.5 for **Bad Grasp**
 - Estimated q > 0.5 for **Good Grasp**

Three Ensembles

- Constant Weights
- ImECNN
- GrlmECNN

Cornell Dataset

Up to 6% classification accuracy increase vs strongest expert

GATING NETWORK	Constant Weights	ImECNN	GrlmECNN
WEIGHT FUNCTION $g_i(\cdot)$	Input-Independent	Image-Dependent	(Grasp + Image)-Dependent

EXPERIMENT

Verify performance of GrImECNN

- 10 Challenging YCB Objects
- Three poses each

Most cases

accuracy(GrImECNN) ≥ **accuracy**(Best Expert)

Objects	Success				
	GQCNN	Gen-RGB	Gen-D	GrImECNN	
Screwdriver	3/3	2/3	3/3	3/3	
Windex	2/3	2/3	3/3	2/3	
Mustard	1/3	1/3	3/3	3/3	
Bleach	2/3	2/3	2/3	3/3	
Pear	2/3	0/3	1/3	2/3	
Banana	3/3	3/3	3/3	3/3	
Mug	1/3	1/3	2/3	2/3	
Spatula	3/3	3/3	2/3	3/3	
Spring Clamp	3/3	3/3	2/3	3/3	
Wine Glass	0/3	0/3	1/3	1/3	
Total	20/30	17/30	22/30	25/30	

CONCLUSION

Improved estimation of grasp quality **Low overhead** in performance/training **Takes advantage** of existing algorithms

Future Work:

- Additional experts & training data
- Impact of expert selection
- Different ensembling techniques