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PLANAR GRASPING PROBLEM

Robots often used in factories for pick-and place

Revolutionized several industries

Why not use grasping in other places? (Generalized Grasping)

HOUSEHOLDS RECYCLING PLANTS WAREHOUSES
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PLANAR GRASPING PROBLEM

Grasping general objects is difficult

Excel in controlled environments

Known object shapes

Known rough object locations

Known assumptions

Facilitates widespread adoption
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Lose Performance in unknown environments
Unknown object shapes

Unknown object types and quantity

No a-priori assumptions on environment

Prevents widespread adoption



MODERN GRASPING APPROACHES

Best Candidate

Quality Estimation

Generative
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Modern solutions to generalized planar grasping

Data-Driven

Attempt to generalize

Three major approaches



MODERN GRASPING APPROACHES

Best Candidate

Quality Estimation

Generative

Best
Candidate
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MODERN GRASPING APPROACHES

Best Candidate

Quality Estimation

Generative
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Representative Algorithm

Fast-Search [1]

Two-Stage Process

1. Neural Network estimates top candidate grasps

2. Second Neural Network selects best grasp from 
candidates chosen in step 1

[ 1 ]  L E N Z  E T  A L .  ” D E E P  L E A R N I N G  F O R  D E T E C T I N G  R O B O T  G R A S P S ” ,  T H E  I N T E R N A T I O N A L  J O U R N A L  O F  R O B O T I C S  R E S E A R C H ,  2 0 1 5



MODERN GRASPING APPROACHES

Best Candidate

Quality Estimation

Generative
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Question How stable is this grasp on this object?

Grasp Quality used as a metric for grasp stability 
0.0, 1.0

Quality Estimation uses Convolutional Neural 
Networks to estimate Grasp Quality



MODERN GRASPING APPROACHES

Best Candidate

Quality Estimation

Generative

Quality
Estimation

Grasp Quality
𝑞 → [0.0, 1.0]

Grasp 
Sampler
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MODERN GRASPING APPROACHES

Best Candidate

Quality Estimation

Generative

10

Sample multiple grasps and rank
Select best one (highest grasp quality)



MODERN GRASPING APPROACHES

Best Candidate

Quality Estimation

Generative
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Representative Algorithm

Dexnet-4.0

Grasp Quality Convolutional Neural Network [1]

(GQCNN)
Trained on large synthetic dataset

Fully convolutional neural network

Uses depth images

[ 1 ]  M A H L E R  E T A L .  ” L E A R N I N G  A M B I D E X T R O U S  R O B OT G R A S P I N G  P O L I C I E S ”,  S C I E N C E  R O B OT I C S  2 0 1 9



MODERN GRASPING APPROACHES

Best Candidate

Quality Estimation

Generative

Generative
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MODERN GRASPING APPROACHES

Best Candidate

Quality Estimation

Generative
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Avoid sampling multiple grasps

Select pixel where grasp quality is highest



MODERN GRASPING APPROACHES

Best Candidate

Quality Estimation

Generative
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Representative Algorithm

Generative Grasping Convolutional 
Neural Network [1]

(GGCNN)
Trained on sets of real-life images and grasping rectangles

Can run in real time

Uses depth images

[ 1 ]  M O R R I S O N  E T  A L .  ” C L O S I N G  T H E  L O O P  F O R  R O B O T I C  G R A S P I N G :  A  R E A L - T I M E ,  G E N E R A T I V E  G R A S P  S Y N T H E S I S  A P P R O A C H ” ,  R S S  2 0 1 4



PROBLEM WITH EXISTING METHODS
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◦Above grasping algorithms attempt to generalize

◦Still show difficulty grasping

◦ Sensitivity to object shapes

◦ Sensitivity to environmental conditions

◦ Sensitivity to camera/lighting



GrippersConditionsObjects

PROBLEM WITH EXISTING METHODS
LARGE INPUT SPACE

Large variety of objects

Different environmental conditions

Different gripper parameters
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PROBLEM WITH EXISTING METHODS

Inability to generalize

Sensitivity to environmental conditions

Grasping difficult / unknown objects

IMAGE SPACE

Grasping Algorithm A

Grasping Algorithm B
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Input region where Algorithm A’s estimates is closest to ground truth

Input region where Algorithm B’s estimates is closest to ground truth



ENSEMBLE-BASED SOLUTION

ECNN: Ensemble Convolutional Neural Network

Combine multiple grasping algorithms

• Combination done by Gating Network

• Take advantage of strengths of each expert

• Overcome weaknesses of each

Emphasis on performance and flexibility
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ENSEMBLING TECHNIQUES

Best Candidate

Quality Estimation

Generative

Ensemble expert candidacy

Different experts which can be used

Impacts ensemble network architecture
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ENSEMBLING TECHNIQUES

Best Candidate

Quality Estimation

Generative

Best
Candidate
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Combination through selection

Gating Network selects which grasp to execute



ENSEMBLING TECHNIQUES

Best Candidate

Quality Estimation

Generative

Quality
Estimation

Grasp Quality
𝑞 → [0.0, 1.0]
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Combination through grasp quality

Gating Network calculates weighted average 

quality from each expert



ENSEMBLING TECHNIQUES

Best Candidate

Quality Estimation

Generative

Generative
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Combination through grasp quality

Gating Network calculates weighted average 

quality from each expert



ENSEMBLE-BASED SOLUTION

ECNN: Ensemble Convolutional Neural Network

Choose Quality Estimation combination

◦ Avoid discarding expert opinions

(Weighted sum ensures all experts contribute)

◦ Pair with Grasp Sampler

◦ Use Mixture Of Experts model

23



MIXTURE OF EXPERTS

Statistical Ensemble
Combine multiple classifier outputs

Improve overall performance

• Elimination of generalization errors

• Improve estimation accuracy
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MIXTURE OF EXPERTS

Input-dependent weighted combination
• Weights as a function of {image, grasp}
• Assign weights to expert opinion based on the input

• Learn which experts provide grasp quality closest to 
ground truth for which input

• Gating Network

Benefits from expert diversity

𝑦 𝑥 =෍

𝑖=1

𝑛

𝑦𝑖 𝑥 𝑔𝑖 𝑥
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MIXTURE OF EXPERTS

Training Phase Learn which experts perform 
best on which inputs

Evaluation Phase Use learned information 
to assign weights to experts based on input

𝑦 𝑥 = ෍

𝑖=1

𝑛

𝑦𝑖 𝑥 𝑔𝑖 𝑥
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MIXTURE OF EXPERTS

Input

I

G

Grasping 
Expert 

Qualities

𝑞0

𝑞1

𝑞2

Gating 
Network 
Weights

𝑔0

𝑔1

𝑔2

Output

𝑞
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MIXTURE OF EXPERTS

Advantages

• Existing open-source solutions and methods

• Less training

• Increased generalization
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ECNNs: Ensemble CNNs

Goal: Design Gating Network

• Constant Weights (reference)

• Image (ImECNN)

• Grasp-Image (GrImECNN)

Goal: Expert Selection

• Diversity

• Availability

• Accuracy
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For Comparison

• Weights learned offline

• Weights independent of input

𝑦 =෍

𝑖=1

𝑛

𝑔𝑖𝑦𝑖 𝑥
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CONSTANT WEIGHTS



IMAGE

Expert Classification: per-object

• Convolutional Gating Network

• Weights dependent on image of object

𝑦 = ෍

𝑖=1

𝑛

𝑔𝑖 𝐈 𝑦𝑖 𝑥
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32

Expert Classification:
per-object, per-grasp

Grasp Integration:
Crop + Rotate Image

GRASP-IMAGE



GRASP-IMAGE

Expert Classification: per-object, per-grasp

Grasp Integration: Crop + Rotate Image
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COMPATIBILITY –DATA ADAPTERS
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Varied grasping algorithms

High flexibility



PERFORMANCE & TRAINING

Training

• Training Gating Network

• Network should learn mapping

Image, Grasp → Expert Weights 𝑔𝑖
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PERFORMANCE & TRAINING

Efficient Training

• Frozen expert models

• Run experts once, cache results
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PERFORMANCE & TRAINING

Low Performance Overhead

• If possible, parallelize networks

•Small Gating Network
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VERIFICATION

[ 1 ]  L E N Z  E T  A L . ” D E E P  L E A R N I N G  F O R  D E T E C T I N G  R O B O T I C  G R A S P S ” , I J R R  2 0 1 4

Sample ECNNs

Three Experts

• Finetuned Dexnet 4.0 (GQCNN-4.0)

• Generative Grasping CNN (GGCNN-D)

• Custom Generative Grasping CNN (GGCNN-RGB)

Training

Cornell Dataset[1]

Experiment

YCB Dataset[2]

Franka Emika + RealSense
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[ 2 ]  C A L L I  E T  A L . ” Y A L E - C M U - B E R K E L E Y  D A T A S E T  F O R  R O B O T I C  M A N I P U L A T I O N  R E S E A R C H ” , I J R R  2 0 1 7



EXPERT SELECTION

Emphasis on

DIVERSITY AVAILABILITY ACCURACY
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TRAINING

Three Ensembles
• Constant Weights

• ImECNN

• GrImECNN

Dataset
• Cornell Grasping Dataset

• Handlabelled good/bad 
grasps

• Images from real camera

GATING NETWORK Constant Weights ImECNN GrImECNN

WEIGHT FUNCTION 𝒈𝒊(⋅) Input-Independent Image-Dependent (Grasp + Image)-Dependent
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Good Grasps

Bad Grasps

Mug Pen Ground Truth Grasp Quality

1.0

0.0

( Each Grasp )



TRAINING

Metric

• Testing classification accuracy

• Grasp successfully classified if

• Estimated 𝑞 < 0.5 for Bad Grasp

• Estimated 𝑞 > 0.5 for Good Grasp
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TRAINING
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Good Grasps

Bad Grasps

Mug Pen Expert A Expert B

3/5 2/5

2/4 4/4

Successfully classified good grasps
(Estimated 𝑞 > 0.5)

Successfully classified bad grasps
(Estimated 𝑞 < 0.5)

Grasp Classification Accuracy: 5/9 6/9



TRAINING

Three Ensembles
• Constant Weights

• ImECNN

• GrImECNN

Cornell Dataset

Up to 6% classification accuracy increase vs. 
strongest expert

GATING NETWORK Constant Weights ImECNN GrImECNN

WEIGHT FUNCTION 𝒈𝒊(⋅) Input-Independent Image-Dependent (Grasp + Image)-Dependent
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EXPERIMENT

Verify performance of GrImECNN

• 10 Challenging YCB Objects

• Three poses each

Most cases

accuracy(GrImECNN) ≥ accuracy(Best Expert)
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CONCLUSION

Improved estimation of grasp quality

Low overhead in performance/training

Takes advantage of existing algorithms

Future Work:
• Additional experts & training data

• Impact of expert selection

• Different ensembling techniques
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